Genome Map Assembly from NanoChannel Array Data for Structural Variation Detection in the Human Genome and Finishing in Tribolium

Abstract
We present the use of a newly available technology utilizing NanoChannel Arrays to analyze complex genomic architecture and functional regions by visualization of 100 kilobase and longer stretches of intact genomic DNA. A successful de novo assembly of the human genome is presented and utilized in structural variation analysis. Structural variants are detected as low-scoring regions of the assembly flanked by high-scoring alignments. Examples of structural variants are presented from the KIR region of chromosome 19 and the IGH region of chromosome 14. These loci are important in the immune system function and both are known to be highly variable. The extremely long DNA molecules provide unique opportunities to study these complex structural variants which are difficult to analyze using sequencing alone.

The high-assembly quality achievable with genome maps makes them useful for finishing where gaps between sequence contigs exist. We present an analysis of the Tribolium castaneum genome, and demonstrate the sizing of several gaps, as well as ordering and placing contigs with previously unknown locations. This organism’s assembly has over 400 scaffolds and 7000 contigs and is complicated by a large fraction of repetitive heterochromatin sequence. The Irys platform from BioNano Genomics overcomes the limitations of short fragment technologies to provide unprecedented insights into whole-genome biology. Irys is a single-molecule genome analysis system based on NanoChannel Array technology that linearizes extremely long DNA molecules for observation. This high-throughput platform automates massively parallel imaging of individual molecules of genomic DNA hundreds of kilobases in size to measure sufficient sequence uniqueness and long-range contiguity critical for unambiguous de novo assembly of complex genomes. High-resolution genome maps assembled de novo retain the original context and architecture of the genome, making them useful for sequence assembly scaffolding and structural variation detection applications.

Methods
(1) DNA is labeled with irysPrep™ reagents by incorporation of fluorophore-labeled nucleotides at a specific sequence motif throughout the genome. (2) The labeled genomic DNA is then linearized in the IrysChip™ nanochannels and single molecules are imaged by Irys. (3) Irys performs automated data collection and image processing. (4) Molecules are labeled with a unique signature pattern that is uniquely identifiable. (5) Molecules are assembled into genome maps and downstream analysis of maps is performed with the IrysView™ software suite. (6) Downstream analyses include detection of structural variation.

Background
Generating high-quality finished genomes replete with accurate identification of structural variation and high completion (minimal gaps) remains challenging using short read sequencing technologies alone. The Irys platform provides direct visualization of long DNA molecules in their native state, bypassing the statistical inference needed to align paired-end reads with an uncertain insert size distribution. These long labeled molecules are de novo assembled into physical maps spanning the whole genome. The resulting order and orientation of sequence elements in the map can be used for anchoring NGS contigs and structural variation detection.

Conclusions
BioNano Genomics Irys enables visualization of extremely long, single DNA molecules for the direct characterization of complex structural events in the genome. This system permits rapid accurate genome-wide de novo assembly and detection of structural variants that typically confound short-read genome assembly and comparative genomic analysis. Here we demonstrate de novo human Genome Map assembly and variant detection capabilities and significant scaffolding improvement of the assembly of an arthropod genome.

References