• Home/
  • The blackgrass genome reveals patterns of divergent evolution of non-target site resistance to herbicides.

The blackgrass genome reveals patterns of divergent evolution of non-target site resistance to herbicides.

bioRxiv 2021
Cai L, et al.

Lichun Cai, David Comont, Dana MacGregor, Claudia Lowe, Roland Beffa, Christopher Saski, Paul Neve

Globally, weedy plants result in more crop yield loss than plant pathogens and insect pests combined. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated environmental management and change. The evolution of resistance to herbicides is an emblematic example of this rapid adaptation. Here, we focus on Alopecurus myosuroides (blackgrass), the most impactful agricultural weed in Europe. To gain insights into the evolutionary history and genomic mechanisms underlying adaptation in blackgrass, we assembled and annotated its large, complex genome. We show that non-target site herbicide resistance is oligogenic and likely evolves from standing genetic variation. We present evidence for divergent selection of resistance at the level of the genome in wild, evolved populations, though at the transcriptional level, resistance mechanisms are underpinned by similar patterns of up-regulation of stress- and defence-responsive gene families. These gene families are expanded in the blackgrass genome, suggesting that the large, duplicated, and dynamic genome plays a role in enabling rapid adaptation in blackgrass. These observations have wide significance for understanding rapid plant adaptation in novel stressful environments.

Top

This website stores cookies on your computer. These cookies are used to collect information about how you interact with our website and allow us to remember you. We use this information in order to improve and customize your browsing experience and for analytics and metrics about our visitors both on this website and other media. To find out more about the cookies we use, see our Privacy Policy.