• Application

  • Implementation

Literature

  • case studies

    This Case Study demonstrates the power of combining 2 single molecule technologies to produce Gold-quality genomes. Those allow the discovery of substantial amount of structural variation unique to individuals and populations otherwise not accessed by other short-read technologies.

  • case studies

    This Case Study highlights Scientists at the USDA and Cold Spring Harbor Laboratory who know that better breeding of maize to feed a growing population will depend on an accurate reference assembly. They tackled the previously intractable crop with a combination of PacBio® Sequencing and BioNano Genomics®genome maps, leading to the first-ever high-quality reference assembly.

  • white papers

    This White Paper explains how NGS fails to adequately analyze repetitive parts of the genome and large structural variation. Bionano’s Next-Generation Mapping is able to detect all SV types with high sensitivity and specificity, and examples of biologically important large structural variants in plant and animal genomes are shown.

  • white papers

    This White Paper explains how NGS leaves half of patients with genetic disorders without a molecular diagnosis, because it fails to adequately analyze repetitive parts of the genome and large structural variation. Bionano Genome Mapping is able to detect all SV types with high sensitivity and specificity, and examples of cancer and genetic disease are shown.

  • white papers

    This white paper explains how Bionano NGM can make any sequency assembly up to 100 times more contiguous by scaffolding sequence contigs, and more exact by correcting errors. The new two-enzyme hybrid scaffold pipeline introduced here improves both aspects. It creates functional genomes at a low cost, no matter what your sequencing strategy is.

  • white papers

    Scientists at Rutgers University, Washington University, and Ibis Biosciences successfully deployed Next-Generation Mapping (NGM) technology from Bionano Genomics to help produce the first complete assembly for a fast-growing aquatic plant with biofuel potential. What emerged is a clear view into a genome undergoing drastic reduction and a tool to elucidate chromosome-scale dynamics.